
0.25
0.5
0.75
1.25
1.5
1.75
2
Machine learning for the semantic web
Published on 2011-09-055603 Views
Presentation
Document Classification into large taxonomies00:00
How to Represent Text? ...from Characters to Logic00:00
DMoz (Open Directory Project)02:20:56
Some Initial thoughts17:43:34
Classification of a query into DMoz40:08:38
Quick example: Why representation matters?46:47:34
Classification of a document into DMoz66:36:08
Visual & Contextual Search81:19:19
Contextualized search85:06:47
Example: searching 167:53:03
Context sensitive search with168:07:34
News reporting bias168:16:57
News Reporting Bias example173:54:39
Experimental setup181:54:54
Prediction of news source190:22:40
Detecting News Reporting194:20:51
Easy decision problems require simple data representation210:08:40
Harder decision problems require better data representation - 1210:28:27
Harder decision problems require better data representation - 2210:50:19
Harder decision problems require better data representation - 3211:15:17
How we represent Text?211:29:47
How we process data?211:41:01
News Visualization212:05:14
Topic landscape of the query “Clinton” from Reuters news 1996-1997213:23:21
What we do with data?263:31:38
Visualization of social relationships between “Clinton”263:39:24
Topic Trends Tracking of the documents including “Clinton”272:39:29
Key paradigms287:36:05
WW2 query “Pearl Harbor” into NYTimes archive305:09:01
WW2 query “Belgrade” into NYTimes archive315:23:36
How different research areas approach text?348:18:09
WW2 query “Normandy” into NYTimes archive349:54:40
Levels of text representations - 9356:26:43
Language model level360:59:13
Context aware auto-complete373:07:18
Context-aware prediction for document authoring - 1374:52:00
Context-aware prediction for document authoring - 2375:48:45
How do we represent text?391:07:21
Context-aware prediction for document authoring - 3392:02:20
Levels of text representations - 2392:58:08
Levels of text representations - 10404:25:21
Full-parsing level404:53:24
Text Enrichment412:59:57
Text enrichment with http:// Enrycher.ijs.si413:30:08
Levels of text representations - 1420:57:38
Levels of text representations - 3487:58:57
Character level representation489:05:33
Good and bad sides of character level representation (n-grams)502:28:11
Language identification508:42:12
Graph559:39:03
Knowledge based summarization560:05:02
Summarization via semantic graphs560:27:55
Detailed Summarization560:37:18
Example of automatic summary560:42:40
Character level normalization585:58:30
Levels of text representations - 4586:30:42
Word level602:24:54
Key semantic word Properties606:22:58
Levels of text representations - 12619:40:57
Collaborative tagging630:13:27
Example: flickr.com tagging630:21:46
Example: del.icio.us tagging630:34:12
Stop-words631:21:06
Levels of text representations - 14635:28:45
Stemming and lemmatization638:58:33
Template / frames level639:38:02
Examples of simple templates644:13:16
Stemming659:02:04
Levels of text representations - 5669:29:32
Phrase level670:47:45
Google n-gram corpus686:32:09
Examples of Google n-grams709:01:38
Levels of text representations - 6717:03:57
Part-of-Speech718:28:12
Part-of-Speech Tags718:51:03
Part-of-Speech examples719:14:59
Levels of text representations - 7732:10:49
Taxonomies/thesaurus level733:05:40
WordNet – database of lexical734:40:08
WordNet relations744:19:58
Levels of text representations - 8768:52:32
Vector-space model level773:35:47
Cyc’s front-end: “Cyc Analytic Environment” – querying 784:17:03
Bag-of-Words document representation786:30:32
Bag-of-Words Words799:28:09
Example document and its vector representation819:05:18
Cyc’s front-end: “Cyc Analytic Environment” – justification 825:49:47
Similarity between BoW845:40:14
Document Categorization Task876:43:20
Algorithms for learning document classifiers888:40:06
Example learning algorithm: Perceptron900:26:35
Measuring success – Model quality estimation914:29:55
Document Clustering Task915:21:47
K-Means clustering algorithm923:30:08
Example of hierarchical clustering (bisecting k-means)926:59:16
Latent Semantic Indexing928:24:33
LSI Example928:43:57
Further references ...963:48:48
References to some Text-Mining books964:03:21
Books on Semantic Technologies968:54:54
References to the main conferences970:44:07
Videos on Text and Semantic Technologies976:03:01