
0.25
0.5
0.75
1.25
1.5
1.75
2
Understanding and communicating with data
Published on 2016-10-061228 Views
Presentation
Understanding and Communicating with Data00:00
About Me04:57:01
Data… there’s a lot out there!/119:38:57
Data… there’s a lot out there!/230:52:20
Communicating with data/144:48:09
Communicating with data/263:00:15
Data Visualisation is…84:35:14
What about Wikipedia?93:14:17
An example – Detroit (1)100:44:01
An example – Detroit (2)124:27:29
Why data visualisation?141:37:30
Data isn’t new: we’ve always needed to understand and communicate insights154:51:33
Cholera in London, 1854164:44:53
John Snow184:37:20
The First Bar Chart: An apology198:39:17
Types of Visualisation210:41:29
Exploratory Visualisation – Where can you afford to live?228:43:29
Explanatory Visualisation244:24:18
Storytelling/1259:01:29
Storytelling/2264:31:37
Humans have been telling stories for centuries…278:00:00
Storytelling with data visualisation286:22:59
Considerations for the story304:56:38
1. Your audience307:36:49
2. The story328:58:10
2. The story (2)348:54:16
3. The action359:13:34
Structuring your story: author- or reader-driven?370:40:44
Balancing author- and reader-driven stories/1378:47:05
Balancing author- and reader-driven stories/2399:48:39
Balancing author- and reader-driven stories/3412:30:57
Finding a ‘compelling’ narrative421:10:40
Communicating your message432:19:35
Structure without a story438:30:01
Highlighting and Emphasising457:20:38
Emphasising key information for the mind (1)474:12:05
Chartjunk496:26:50
Emphasising key information for the mind (2)510:10:49
Chartjunk Example517:41:53
Chartjunk Example - Fixed536:45:19
Example546:56:32
Let’s fix this horrible example 564:37:31
After removing all the ‘junk’ and keeping only the ‘data’, we get:582:24:01
The Beauty Paradox604:07:21
Organising and Structuring Information622:26:12
How is data displayed?624:34:07
Ordered data648:11:09
Unordered data/1656:27:21
Unordered data/2665:13:45
Ranking Visual Encodings673:46:58
Cleveland and McGill - Example696:56:41
Cleveland and McGill728:45:24
Choosing a Graphic for Visual Perception731:30:31
How many dimensions can you find being represented on this map?811:39:10
Pattern Recognition814:52:03
Gestalt Theory: Principles of Organisation819:24:24
Gestalt Theory: Principles of Organisation (2)857:14:00
Gestalt Theory: Principles of Organisation (4)877:49:47
Gestalt Theory: Principles of Organisation (5)888:44:02
Gestalt Theory: Principles of Organisation (6)901:54:19
Gestalt Theory: Takeaway Message912:04:10
Who saw a white square over four black circles?925:46:13
Deceiving your brain938:41:49
Your Brain is Deceiving You!941:32:12
Which yellow line is longer?966:59:12
Which yellow line is longer? (2)970:12:15
Don’t stretch the truth!975:22:49
Warning!977:15:36
Be Objective980:32:29
Lie Factor: An Example/1990:49:43
Lie Factor: An Example/21014:01:35
Lie Factor: An Example/31017:18:25
Pie charts + 3D are particularly bad/11020:09:48
Pie charts + 3D are particularly bad/21032:26:41
What makes a visualisation a ‘bad’ visualisation?1057:41:11
Example - Gun deaths in Florida/21093:08:46
Example - Gun deaths in Florida/11098:41:42
Example - Baby Boomers1118:36:15
Example - Facebook Sentiment Data1219:36:44
Example - The Facebook Election1225:41:42
Data Vis Technologies1231:54:11
Web technologies and their role in visualisations1235:58:38
HTML - CSS - JavaScript1240:27:31
Hypertext1248:58:41
CSS (Cascading Style Sheets)1256:24:44
Javascript1260:46:53
Javascript with HTML1264:41:36
D3.js (Data-Driven Documents)1274:15:49
General steps1283:59:17
D31294:26:12
D3: Chain Syntax/11302:00:28
D3: Chain Syntax/21308:09:27
D3 Example1309:24:49
Tableau1326:58:57
Tableau Public1347:37:36
Summary 1355:42:07